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I. INTRODUCTION

In 1957 Weiner and Porcelli [3] gave a derivation based on the fundamental
theorem of algebra of the Cauchy inequality for polynomials which states
that if P(z) = L.~ akzk is a polynomial such that I P(z) I ~ I for all z with
I z I = I, then Iak I ~ I for k = 0, 1,2,... , n. In 1961 Porcelli and Connell [2]
gave a greatly simplified derivation of the same. In this paper we show how
this result coupled with the Stone-Weierstrass theorem can be exploited to
give a development of complex variable theory for once continuously
differentiable functions. Our discussion is aimed at a derivation of the Laurent
expansion for functions defined on an annular region. A byproduct of our
development is the construction of a functional acting on the space C(B)
of complex-valued, continuous functions on the circle I z I = I which may
be interpreted as an integral.

We shall use the maximum modulus theorem for polynomials (which can
be proved in an elementary way). This theorem suffices to give us, in
Theorem 3.1., the Cauchy inequality for polynomials. This, in turn, trivially
implies the Cauchy inequality for functions of the form L.~n akzk.

We denote by T the set of all these functions restricted to B. LetlE C(B).
From the Stone-Weierstrass theorem,lis the limit of a sequence of elements
of T. In Theorem 3.3 the Cauchy inequality is used to define from this
approximating sequence a formal series L::", ak(f) Zk such that if fez) =

L.~n bkzk throughout I z I = I, then ak(f) = bk for k = -n,... , n. It then
turns out that if I is continuously differentiable in an annular region
IX < I z I < {3, where °~ IX < I < (3, then we have fez) = L::", ak(f) Zk.
To facilitate the argument, we set L(f) = ao(f) for IE C(B), and separately
develop the properties of L, thus obtaining an integral. For IE C(B), p an
integer, ap(f) coincides with the p-th Fourier coefficient off
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2. NOTATION

Let K denote the complex plane. For 8 > 0, set U(8) = {z E K; Iz I < o},
B(o) = {z E K; Iz I = o}, U = U(l) and B = B(l). For any continuous
functionfdefined on a set S containing B, set Ilfll = max{lf(z)l; z E B}.

3. THE BASIC COEFFICIENTS

THEOREM 3.1 (Cauchy inequality). If a polynomial P(z) = L~ akzk
satisfies II P II ~ 1, then Iak I ~ I for k = 0, 1, ... , n.

Proof This proof is due to Porcelli and Connell [2]. Trivially, the theorem
holds for polynomials of degree zero. Suppose it holds for polynomials of
degree n or less, and let P(z) = L~+1 akzk be a polynomial of degree n + 1
such that II P II ~ 1.

Let 0 E B, and set Q(z) = 2-1[P(z) - P(Oz)]. Then Q(O) = 0. Let the
polynomial Qo(z) be defined by Q(z) = zQiz). Then II Qo II = II Q II ~ 1.
By the induction hypothesis, I 2-1ak(1 - Ok)1 ~ 1 for k = 1, , n + 1.
Taking 0 such that Ok = -1, we have I ak I ~ 1 for k = 1,2, , n + 1.
Finally, by the maximum modulus theorem, Iao I = I P(O) I ~ II P II ~ 1.

COROLLARY 3.2. IfP(z) = L~n akzk is such that II P II ~ 1, then Iak I ~ 1
for all k.

Proof Set Q(z) = znp(z). Then II Q II = II P II ~ 1, and, by Theorem 3.1,
all I ak I are ~1.

Let To be the family of all real valued elements of T. Clearly, T and To
are subalgebras of C(B), containing the constant function 1. Let Z1, Z2 E B,
Z1 oj=. Z2 , and set P(z) = I z - Z1 1

2 = (z - Z1)(Z - Z1) = -Z1r1 + 2 - Z1Z
for z E B. Then P E To and P(Z2) oj=. P(Z1)' Thus, To separates points of B
and, hence, from the Stone-Weierstrass theorem, the closure of To in C(B)
is the space Co(B) of all real-valued elements of C(B). Hence, the closure
of Tis C(B).

THEOREM 3.3. LetfE C(B). Then there exists a sequence {aif)}~=_", such
that Iak(f) I ~ Ilfll for all k, and such that if P(z) = L~n bkzk satisfies
liP - fll ~ 8, then I ak(f) - bk I ~ olor k = 0, ±l,..., ±n.

Proof For n = 1,2,... , let Pn(z) = :L:", ankzk (with ank = 0 for all k
with I k I ~ some ko(n)) be such that II Pn - fll ~ lin. Then for n, m = 1,2,...
andz E B,

IL (ank - amk) Zk I= I Pn(z) - Pm(z) I

~ II Pn - Pm II ~ II Pn - fil + Ilf - Pm II ~ n-1+ m-l,
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and, hence, from Corollary 3.2, lank - amk I ~ n- I + m-I for k =
0, ±1, ±2,.... Thus, for each k, alk' a2k ,... converges to a limit ak(f) and
Iaij) - ank I ~ lin for n = 1,2,.... Let z E B. Then, for n = 1,2,... ,

ILankzk I= IPn(z)I ~ II Pn II ~ II Pn - fll + Ilfll ~ WI + Ilfll,

and, hence, from Corollary 3.2, I ank I ~ Ilfll + n-\ for all k. Letting
n -+ 00, we obtain Iak(f) I ~ Ilfll.

For Z E B, setting bk = 0 for I k I > n, we have

IL (ank - bk) Zk I= I P(z) - Pn(z)I

~ II P - Pn II ~ II P - fll + Ilf - Pn II ~ 0 + n-I
•

Hence lank - bk I ~ 0 + n-I. Letting n -+ 00, we obtain

4. THE FUNCTIONAL ao(f)

For f E C(B), set L(f) = ao(f).

THEOREM 4.1. L is a bounded linear functional on C(B) such that, for
fE C(B), 0 E B,

(1) L(1) = 1.

(2) II L II = 1.

(3) L(fe) = L(f), where fe(z) = j(Oz).

(4) L(I) = L(f) and, hence, iff is real-valued, L(f) is real.

(5) Ifj(z)? Ofor all z E B, then L(I) ? O.

(6) Ifj(z)? Ofor all z E B andj(zo) =1= Ofor some Zo E B, then L(f) > O.

Proof From Theorem 3.4, I L(f)1 = I ao(f) I ~ Ilfll and, thus, II L II ~ 1.
Trivially, L(1) = ao(l) = 1 and, thus, I L(I)1 = 1 and II L II = 1.

We now show that L is linear. Let f, g E C(B) and let 0 > O. Then there
exist finite series P(z) = L: akzk and Q(z) = L: bkzk such that II P - fll < 014,
II Q - g II < 014. Whence,

IIU+ g) - (P + Q)II ~ lif - PII + II g - QII < (014) + (014) = 012
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and, hence, from Theorem 3.3, Iao - ao(f)! :s;: 0/4, Ibo - ao(g) I :s;: 0/4, and
I(ao + bo) - ao(f + g)1 :s;: 0/2. Thus,

I ao(f + g) - ao(f) - ao(g)I :s;: I ao(f + g) - ao - bo I
+ I ao - ao(f)! + I bo - ao(g) I

:s;: (0/4) + (0/4) + (0/2) = o.

Since 0 is arbitrary, L(f + g) = ao(f + g) = ao(f) + ao(g) = L(f) + L(g).
Similarly, for h E C(B) and c a constant, L(ch) = cL(h).

We now establish the rotation invariance property (3). For z E B,
If(()z) - P(()z) I < 0/4 and, from Theorem 3.3, I ao(fe) - ao I :s;: 0/4. Thus

Iao(fe) - ao(f) I :s;: Iao(fe) - ao I + Iao - ao(f) I :s;: (0/4) + (0/4) = 0/2.

Since 0 is arbitrary, L(fe) = ao(fe) = ao(f) = L(f).
We now establish (4). For z E B,

and, hence, from Theorem 3.3, Iao(J) - ao I :s;: 0/4. Thus

I ao(J) - ao(f) I :s;: Iao(J) - ao I + I ao - ao(f) I :s;: (0/4) + (0/4) = 0/2.

- -
Since 0 is arbitrary, we have L(f) = ao(f) = ao(f) = L(f).

We establish (5). Without loss of generality, suppose 0 :S;:f(z) :s;: 1 for z E B.
Then 1 - L(f) = L(1) - L(f) = L(1 - f) :s;:! L(1 -f)1 :s;: 111 - fll :s;: 1,
and, thus, L(f) ;;? O.

We now prove (6). Without loss of generality, supposef(l) > O. Then there
exist a 0 > 0 such thatf(z) > 0 for all z E B satisfying I z - 1 I < o. Now
there exist ()1 , ()2 , ••• , ()n E B such that given a z E B, there exists a ()k with
I ()kZ - 1 I < 0, so that Iek(z) = f(()kZ) > O. Setting fo = L:; fek , we obtain
fo(z) > 0 for all Z E B. With p = min{fo(z); Z E B}, we have L(fo) ;;? L(p) =
p >0.

THEOREM 4.2. For IE C(B) and p an integer, a,if) = L(z-Pf).

Proof Let 0 > O. Then there exists a finite series P(z) = L: bkzk such
that II P - III < 0/2. Now, for z E B,

Iz-Pf(z) - L bk+1)Zk I = I z-P[f(z) - P(z)] I = Ifez) - P(z)I < 0/2,
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and, hence, from Theorem 3.3, 1 b'P - ao(r'Pf) I ~ 012. Thus,

Since 0 is arbitrary, a'P(f) = L(r'Pf).

THEOREM 4.3. LetfE C(B) be such that ak(f) = Ofor all k. Thenf(z) = 0
for all Z E B.

Proof From Theorem 4.2, L(Qf) = 0 for all Q in T. Set M = max{I, Ilfll}
and let 0 > O. There exists aPE T such that II P - fll < oiM. Then

IIIfl 2
- Pfll = IlfU - 15)11 ~ Ilfll '11f - 1511 ~ Mllf - PII < 0

and, hence,

I L(lfI 2)1 = I L(lfI 2
) - L(Pf)1= I L(lfl 2

- Pf)j ~ IIIfl 2
- Pfll < O.

Since 0 is arbitrary, L(lfI 2) = O. From (6) of Theorem 4.I,j(z) = 0 for all
ZEB.

Remark. LetfE C(B). Then (see Theorem 5.2)

L(f) = (21Ti)-1 JB f(z) r 1dz = (21T)-1 (" f(eiO) dB.

Thus, by Theorem 4.2, aif) (p = 0, ± I, ±2,...) is the p-th Fourier coefficient
(21T)-1 J~" f(e iO) ri'PO dB of f No result of this paper requires knowledge of
these interpretations.

5. THE LAURENT EXPANSION

Let 0 ~ ex < I < {3 and let g be a complex, continuous function on the
annulus ex < I z I < {3. For p = 0, ±l, ±2, ... , ex < r < {3, we set air, g) =
a'P(gr) r-P, where gr(z) = g(rz) for all z E B.

THEOREM 5.1. Let 0 ~ ex < I < {3 and let f be a complex, continuously
differentiablefunction on the annulus ex < I z I < {3. Thenfor p = 0, ±I, ±2,... ,
and ex < P < {3, we have a'P(p,j) = aiI,j) = a'P(f).

Proof It suffices to show that ao(p,j) = ao(f), since from Theorem 4.2
we would have, for every integer p,
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Let 0: < 0:0 < 1 < f30 < f3 and let E > O. Then there exists a 8 > 0 such
that if 0:0 :'(; I x I :'(; f30 , 0:0 :'(; I y I :'(; f30 and Iy - x I < 8, then

l[f(y) - f(x)J(y - X)-1 - f'(x) I < E/2.

Let 0:0 :'(; r < s :'(; f30, I s - r I < 8, and let I 0 I = 1, 0 < I 0 - 1 I < 8W
Let z be a point of B. Then Isz - rz I = I s - r I < 8, I rz - rOz 1=
r I 1 - 0 I :'(; f3 I 1 - 0 I < 8,

(1) l[f.(=) - frCz)](s - r)-1 - f'(rz)z I
= l[f(sz) - f(rz)](sz - rz)-1 - f'(rz) 1 < E/2,

and

(2) l[freCz) - fr(z)](rO - r)-1 - f'(rz)z I < E/2.

Adding, we obtain

I[f.(=) -fr(z)J(s - r)-1 - [fro(z) -fr(z)}(r8 - r)-1 I < E,

and thus

(3) I L[(fs -fr)(s - r)-1 - (fro -fr)(rO - r)-IJI :'(; E.

Now, since I 8 I = 1, L(fro) = L(fr), and, thus, from (3),

I L[(fs - fr)(s - r)-I]1 :'(; E.

Consequently,

We may assume p =F 1. Subdividing suitably the interval with endpoints
p and 1, we obtain I ao(p,f) - ao(/)1:'(; Ell - p I. Since E is arbitrary,
ao(p,f) = ao(/)·

THEOREM 5.2 (Laurent expansion). Let 0 :'(; 0: < 1 < f3 and let f be a
complex, continuously differentiable function on S = {z; 0: < I z I < f3}. Then
the series L ak(/) Zk converges uniformly to f on compact subsets ofS.

Proof Let C be a compact subset of S. Choose r, sand p such that
0< p < 1,0: < r < s < f3 and such that Izip ;;0: r, I z lip :'(; s for all z in C.
SetM = max{lf(t)l; r:'(; I t 1:'(; s} and 1etp be an integer. From Theorem 3.3,
I ap(fr) 1 :'(; M, and, hence, applying Theorem 5.1,
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Similarly, I a p(/) 1 ~ Ms-p. Thus, if z belongs to C then,

Iaif) zP I ~ MpP (p = 0, I,...), I a_,if) z-P I ~ Mpp (p = 1,2,...),

and so, the series g(z) = L ak(/) Zk is absolute and uniformly convergent
on C.

Let z E S and set Yo = I z I. Then, for any integers p, k, k =1= p, we have
ap(zk) = O. Therefore, for p = 0, ±I, ±2,... ,

Thus, for all integers p, ap(gr - fr ) = 0, and, hence, fromTheorem 4.3,o 0
g(yox) - f(yox) = 0 for all x E B. In particular, since z = YoX for some
x E B, g(z) = fez).

COROLLARY 5.3 (Removable Singularity Theorem). Let f be a complex
function, continuously differentiable on 0 < I z I < R and continuous at O.
Then f is continuously differentiable at O.

Proof. Without loss of generality, we can assume R > 1. From Theorem
5.2, the series L ak(/) Zk converges to f on 0 < I z I < R. Moreover, for every
positive integer p and every p, 0 < p ~ I, we have

Ia-if) I ~ pPmax{lf(z)l; I z I ~ I};

hence a_p = O. Thus, throughout I z I < R, fez) = L; ak(/)zk, and the
result follows.
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